Video Based Person Re-Identification Through Selective Knowledge Distillation
نویسندگان
چکیده
منابع مشابه
Person re-identification by unsupervised video matching
Most existing person re-identification (ReID) methods rely only on the spatial appearance information from either one or multiple person images, whilst ignore the space-time cues readily available in video or imagesequence data. Moreover, they often assume the availability of exhaustively labelled cross-view pairwise data for every camera pair, making them non-scalable to ReID applications in r...
متن کاملDiversity Regularized Spatiotemporal Attention for Video-based Person Re-identification
Video-based person re-identification matches video clips of people across non-overlapping cameras. Most existing methods tackle this problem by encoding each video frame in its entirety and computing an aggregate representation across all frames. In practice, people are often partially occluded, which can corrupt the extracted features. Instead, we propose a new spatiotemporal attention model t...
متن کاملVideo-based Person Re-identification with Accumulative Motion Context
Video based person re-identification plays a central role in realistic security and video surveillance. In this paper we propose a novel Accumulative Motion Context (AMOC) network for addressing this important problem, which effectively exploits the long-range motion context for robustly identifying the same person under challenging conditions. Given a video sequence of the same or different pe...
متن کاملLearning Compact Appearance Representation for Video-based Person Re-Identification
This paper presents a novel approach for video-based person re-identification using multiple Convolutional Neural Networks (CNNs). Unlike previous work, we intend to extract a compact yet discriminative appearance representation from several frames rather than the whole sequence. Specifically, given a video, the representative frames are selected based on the walking profile of consecutive fram...
متن کاملConvolutional LSTM Networks for Video-based Person Re-identification
In this paper, we present an end-to-end approach to simultaneously learn spatio-temporal features and corresponding similarity metric for video-based person re-identification. Given the video sequence of a person, features from each frame that are extracted from all levels of a deep convolutional network can preserve a higher spatial resolution from which we can model finer motion patterns. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Scientific Research in Computer Science, Engineering and Information Technology
سال: 2019
ISSN: 2456-3307
DOI: 10.32628/cseit1952179